Skip to main content

Chemical Dual End-Labeling of Large Ribozymes

  • Protocol
  • First Online:
DNAzymes

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2439))

Abstract

Fast and efficient site-specific labeling of long RNAs is one of the main bottlenecks limiting distance measurements by means of Förster resonance energy transfer (FRET) or electron paramagnetic resonance (EPR) spectroscopy. Here, we present an optimized protocol for dual end-labeling with different fluorophores at the same time meeting the restrictions of highly labile and degradation-sensitive RNAs. We describe in detail the dual-labeling of a catalytically active wild-type group II intron as a typical representative of long functional RNAs. The modular procedure chemically activates the 5′-phosphate and the 3′-ribose for bioconjugation with a pair of fluorophores, as shown herein, or with spin labels. The mild reaction conditions preserve the structural and functional integrity of the biomacromolecule and results in covalent, dual-labeled RNA in its pre-catalytic state in yields suitable for both ensemble and single-molecule FRET experiments.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Panja S, Hua B, Zegarra D et al (2017) Metals induce transient folding and activation of the twister ribozyme. Nat Chem Biol 13(10):1109–1114. https://doi.org/10.1038/nchembio.2459

  2. Borgia A, Borgia MB, Bugge K et al (2018) Extreme disorder in an ultrahigh-affinity protein complex. Nature 555(7694):61–66. https://doi.org/10.1038/nature25762

  3. Suddala KC, Price IR, Dandpat SS et al (2019) Local-to-global signal transduction at the core of a Mn2+ sensing riboswitch. Nat Commun 10(1):4304. https://doi.org/10.1038/s41467-019-12230-5

  4. Steffen FD, Börner R, Freisinger E et al (2019) Stick, Flick, click: DNA-guided fluorescent labeling of long RNA for single-molecule FRET. Chimia 73(4):257–261. https://doi.org/10.2533/chimia.2019.257

  5. Hanspach G, Trucks S, Hengesbach M (2019) Strategic labelling approaches for RNA single-molecule spectroscopy. RNA Biol 16(9):1119–1132. https://doi.org/10.1080/15476286.2019.1593093

  6. Solomatin S, Herschlag D (2009) Methods of site-specific labeling of RNA with fluorescent dyes. In: Herschlag D (ed) Biophysical, chemical, and functional probes of RNA structure approaches to RNA structure, interactions and folding, vol 469, 1st edn. Elsevier, San Diego, pp 47–68.

    Google Scholar 

  7. Liu Y, Sousa R, Wang Y-X (2016) Specific labeling: an effective tool to explore the RNA world. BioEssays 38(2):192–200. https://doi.org/10.1002/bies.201500119

  8. Paredes E, Evans M, Das SR (2011) RNA labeling, conjugation and ligation. Methods 54(2):251–259. https://doi.org/10.1016/j.ymeth.2011.02.008

  9. Klöcker N, Weissenboeck FP, Rentmeister A (2020) Covalent labeling of nucleic acids. Chem Soc Rev 49(23):8749–8773. https://doi.org/10.1039/d0cs00600a

  10. Smith GJ, Sosnick TR, Scherer NF et al (2005) Efficient fluorescence labeling of a large RNA through oligonucleotide hybridization. RNA 11(2):234–239. https://doi.org/10.1261/rna.7180305

  11. Schmitz AG, Zelger-Paulus S, Gasser G et al (2015) Strategy for internal labeling of large RNAs with minimal perturbation by using fluorescent PNA. Chembiochem 16(9):1302–1306. https://doi.org/10.1002/cbic.201500180

  12. Egloff D, Oleinich IA, Zhao M et al (2016) Sequence-specific post-synthetic oligonucleotide labeling for single-molecule fluorescence applications. ACS Chem Biol 11(9):2558–2567. https://doi.org/10.1021/acschembio.6b00343

  13. Zhao M, Steffen FD, Börner R et al (2018) Site-specific dual-color labeling of long RNAs for single-molecule spectroscopy. Nucleic Acids Res 46(3):e13. https://doi.org/10.1093/nar/gkx1100

  14. Jahn K, Olsen EM, Nielsen MM et al (2011) Site-specific chemical labeling of long RNA molecules. Bioconjug Chem 22(1):95–100. https://doi.org/10.1021/bc100422k

  15. Onizuka K, Taniguchi Y, Sasaki S (2009) Site-specific covalent modification of RNA guided by functionality-transfer oligodeoxynucleotides. Bioconjug Chem 20(4):799–803. https://doi.org/10.1021/bc900009p

  16. Moore MJ, Sharp PA (1992) Site-specific modification of pre-mRNA: the 2′-hydroxyl groups at the splice sites. Science 256(5059):992–997.

    Google Scholar 

  17. Baum DA, Silverman SK (2007) Deoxyribozyme-catalyzed labeling of RNA. Angew Chem Int Ed 46(19):3502–3504. https://doi.org/10.1002/anie.200700357

  18. Lang K, Micura R (2008) The preparation of site-specifically modified riboswitch domains as an example for enzymatic ligation of chemically synthesized RNA fragments. Nat Protoc 3(9):1457–1466. https://doi.org/10.1038/nprot.2008.135

  19. Ghaem Maghami M, Scheitl CPM, Höbartner C (2019) Direct in vitro selection of trans-acting ribozymes for posttranscriptional, site-specific, and covalent fluorescent labeling of RNA. J Am Chem Soc 141(50):19546–19549. https://doi.org/10.1021/jacs.9b10531

  20. Zearfoss NR, Ryder SP (2012) End-labeling oligonucleotides with chemical tags after synthesis. In: Conn GL (ed) Recombinant and in vitro RNA synthesis: methods and protocols, vol 941. Humana Press, New York, pp 181–193.

    Google Scholar 

  21. Papastavrou N, Bande O, Marlière P et al (2020) Vitamin-guanosine monophosphate conjugates for in vitro transcription priming. Chem Commun 56(18):2787–2790. https://doi.org/10.1039/c9cc09427j

  22. Warminski M, Sikorski PJ, Kowalska J et al (2017) Applications of phosphate modification and labeling to study (m)RNA caps. Top Curr Chem 375(1):16. https://doi.org/10.1007/s41061-017-0106-y

  23. Westerich KJ, Chandrasekaran KS, Gross-Thebing T et al (2020) Bioorthogonal mRNA labeling at the poly(A) tail for imaging localization and dynamics in live zebrafish embryos. Chem Sci 11(11):3089–3095. https://doi.org/10.1039/C9SC05981D

  24. Hoare DG, Koshland DE (1966) A procedure for the selective modification of carboxyl groups in proteins. J Am Chem Soc 88(9):2057–2058. https://doi.org/10.1021/ja00961a045

  25. Bobbitt JM (1956) Periodate oxidation of carbohydrates. In: Wolfrom ML, Tipson RS (eds) Advances in carbohydrate chemistry, vol 11. Academic Press, Cambridge, pp 1–41.

    Google Scholar 

  26. Chu BC, Wahl GM, Orgel LE (1983) Derivatization of unprotected polynucleotides. Nucleic Acids Res 11(18):6513–6529. https://doi.org/10.1093/nar/11.18.6513

  27. Qin PZ, Pyle AM (1999) Site-specific labeling of RNA with fluorophores and other structural probes. Methods 18(1):60–70. https://doi.org/10.1006/meth.1999.0757

  28. Whitfeld PR (1954) A method for the determination of nucleotide sequence in polyribonucleotides. Biochem J 58(3):390–396. https://doi.org/10.1042/bj0580390

  29. Zamecnik PC, Stephenson ML, Scott JF (1960) Partial purification of soluble RNA. Proc Natl Acad Sci U S A 46(6):811–822. https://doi.org/10.1073/pnas.46.6.811

  30. Proudnikov D, Mirzabekov A (1996) Chemical methods of DNA and RNA fluorescent labeling. Nucleic Acids Res 24(22):4535–4542. https://doi.org/10.1093/nar/24.22.4535

  31. Hermanson GT (2013) Bioconjugate techniques, 3rd edn. Elsevier, London.

    Google Scholar 

  32. Wickramathilaka MP, Tao BY (2019) Characterization of covalent crosslinking strategies for synthesizing DNA-based bioconjugates. J Biol Eng 13:63. https://doi.org/10.1186/s13036-019-0191-2

  33. Pyle AM (2016) Group II intron self-splicing. Annu Rev Biophys 45:183–205. https://doi.org/10.1146/annurev-biophys-062215-011149

  34. Peebles CL, Perlman PS, Mecklenburg KL et al (1986) A self-splicing RNA excises an intron lariat. Cell 44(2):213–223. https://doi.org/10.1016/0092-8674(86)90755-5

  35. Su LJ, Brenowitz M, Pyle AM (2003) An alternative route for the folding of large RNAs: apparent two-state folding by a group II intron ribozyme. J Mol Biol 334(4):639–652. https://doi.org/10.1016/j.jmb.2003.09.071

  36. Gallo S, Furler M, Sigel RKO (2005) In vitro transcription and purification of RNAs of different size. Chimia 59(11):812–816. https://doi.org/10.2533/000942905777675589

  37. Greenfeld M, Herschlag D (2013) Fluorescently labeling synthetic RNAs. In: Lorsch J (ed) Laboratory methods in enzymology: RNA, vol 530, 1st edn. Elsevier, Amsterdam, pp 281–297.

    Google Scholar 

  38. Awwad DA, Rahmouni AR, Aboul-ela F (2020) Protocol for efficient fluorescence 3′ end-labeling of native noncoding RNA domains. MethodsX 7:101148. https://doi.org/10.1016/j.mex.2020.101148

  39. Wang PY, Sexton AN, Culligan WJ et al (2019) Carbodiimide reagents for the chemical probing of RNA structure in cells. RNA 25(1):135–146. https://doi.org/10.1261/rna.067561.118

  40. Mitchell D, Renda AJ, Douds CA et al (2019) In vivo RNA structural probing of uracil and guanine base-pairing by 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide (EDC). RNA 25(1):147–157. https://doi.org/10.1261/rna.067868.118

  41. Price SR, Ito N, Oubridge C et al (1995) Crystallization of RNA-protein complexes. I. Methods for the large-scale preparation of RNA suitable for crystallographic studies. J Mol Biol 249(2):398–408. https://doi.org/10.1006/jmbi.1995.0305

  42. Ferré-D'Amaré AR, Doudna JA (1996) Use of cis- and trans-ribozymes to remove 5′ and 3′ heterogeneities from milligrams of in vitro transcribed RNA. Nucleic Acids Res 24(5):977–978. https://doi.org/10.1093/nar/24.5.977

  43. Vaughan JC, Jia S, Zhuang X (2012) Ultrabright photoactivatable fluorophores created by reductive caging. Nat Methods 9(12):1181–1184. https://doi.org/10.1038/nmeth.2214

  44. Sadlowski CM, Maity S, Kundu K et al (2017) Hydrocyanines: a versatile family of probes for imaging radical oxidants in vitro and in vivo. Mol Syst Des Eng 2(3):191–200. https://doi.org/10.1039/C7ME00014F

Download references

Acknowledgements

Financial support from the Swiss National Science Foundation [200020_192153 to RKOS], the UZH Forschungskredit [FK-20-081 to EA], the University of Zurich, and the Graduate School of Chemical and Molecular Sciences Zurich (CMSZH) is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Susann Zelger-Paulus or Roland K. O. Sigel .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Ahunbay, E., Steffen, F.D., Zelger-Paulus, S., Sigel, R.K.O. (2022). Chemical Dual End-Labeling of Large Ribozymes. In: Steger, G., Rosenbach, H., Span, I. (eds) DNAzymes. Methods in Molecular Biology, vol 2439. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-2047-2_13

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-2047-2_13

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-2046-5

  • Online ISBN: 978-1-0716-2047-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics